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The linear stability of convection in a rapidly rotating sphere studied here builds
on well established relationships between local and global theories appropriate to
the small Ekman number limit. Soward (1977) showed that a disturbance marginal
on local theory necessarily decays with time due to the process of phase mixing
(where the spatial gradient of the frequency is non-zero). By implication, the local
critical Rayleigh number is smaller than the true global value by an O(1) amount. The
complementary view that the local marginal mode cannot be embedded in a consistent
spatial WKBJ solution was expressed by Yano (1992). He explained that the criterion
for the onset of global instability is found by extending the solution onto the complex
s-plane, where s is the distance from the rotation axis, and locating the double turning
point at which phase mixing occurs. He implemented the global criterion on a related
two-parameter family of models, which includes the spherical convection problem for
particular O(1) values of his parameters. Since he used one of them as the basis of a
small-parameter expansion, his results are necessarily approximate for our problem.

Here the asymptotic theory for the sphere is developed along lines parallel to Yano
and hinges on the construction of a dispersion relation. Whereas Yano’s relation is
algebraic as a consequence of his approximations, ours is given by the solution of a
second-order ODE, in which the axial coordinate z is the independent variable. Our
main goal is the determination of the leading-order value of the critical Rayleigh
number together with its first-order correction for various values of the Prandtl
number.

Numerical solutions of the relevant PDEs have also been found, for values of
the Ekman number down to 10−6; these are in good agreement with the asymptotic
theory. The results are also compared with those of Yano, which are surprisingly
good in view of their approximate nature.

1. Introduction
The onset of thermal convection in a rapidly rotating sphere has been the subject

of many papers. Partly this is due to the relevance of the problem for geophysics
and astrophysics; in many planetary cores, and also in many stars, convection is
believed to occur. The pattern of this convection will in many cases be dominated
by rotational effects, while viscous effects play a less important role. In astrophysical
and geophysical problems, the Rayleigh number R for convection is usually well
beyond the value at the onset of convection; nevertheless, without an understanding
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of the linear problem, it is hard to put nonlinear calculations on a firm foundation.
Furthermore, perhaps the most important aspect of the linear theory is the form of
convection selected at onset. This may be modified at high Rayleigh number, but
nevertheless the form at onset gives the framework of discussion for nonlinear effects.

The second reason why this problem has attracted attention is that it has interesting
mathematical properties, so that although the problem seems at first sight similar to
many classical stability problems that were solved in the late 19th and early 20th
centuries, in fact it has distinctive features that have hitherto prevented its full
solution.

The classical problem is defined by a sphere filled with Boussinesq fluid; it is
uniformly heated throughout and maintained at constant temperature at the surface
of the sphere. We will consider the case of stress-free boundary conditions. Gravity is
assumed to act radially inward, with the local acceleration due to gravity proportional
to distance from the centre, as appropriate for self-gravitating uniform-density fluid.
Rapid rotation means that the Taylor number, Ta, is large, or, equivalently, the
Ekman number, E, is small. In this limit it is convenient to refer the system to
cylindrical polar coordinates in which s measures distance from the rotation axis and
z measures the axial distance from the equatorial plane. The mathematical problem
is to find the critical Rayleigh number, and elucidate the form of the convection, in
the asymptotic limit of large Ta. This is the problem we shall address in this paper
(see § 2).

There are many variations on this classical problem. One of the most important is
the case where the fluid lies between concentric spherical shells, rather than within a
single sphere. We shall see that in many cases, though not all, the present asymptotic
theory can be extended to cover the concentric shell problem too. Other variants can
be formulated by changing the internal heating, to (say) a fixed flux of heat emerging
from an inner core, or changing the thermal boundary conditions. The mechanical
boundary conditions can be varied too, but in the limit of small E, there is no
leading-order distinction between rigid boundaries and stress-free boundaries (Zhang
& Jones 1993), as the Ekman layers make only a higher-order correction to the
critical Rayleigh number. Yet other variants can be constructed, where, for example,
the forcing is not gravitational but centrifugal, as is often the case in laboratory
experiments (Busse & Carrigan 1976).

Early attempts at the problem concentrated on axisymmetric modes (see e.g. Chan-
drasekhar 1961). An important advance was made by Roberts (1968), and extended
by Busse (1970), who were the first to recognize that the important modes in the
rapidly rotating system are non-axisymmetric with the convection characterized by a
‘cartridge belt’ pattern when the Prandtl number P is order unity (see § 3.1). That is
to say, the convective rolls have comparatively small azimuthal and radial extent and
are localized in the vicinity of a circular cylinder s = sL (say), whose radius is roughly
one half the radius of the whole sphere. These discoveries were nicely illustrated by
figure 1 of Busse (1970), which has been reproduced on many occasions.

The basis of the Roberts–Busse local theory is the assumption that the azimuthal
dependence is sinusoidal and that convection onsets in the neighbourhood of a critical
cylinder s = sL where the radial dependence is sinusoidal. Thus the axial structure of
the convective rolls is governed by a second-order differential equation in the axial
coordinate z. It is solved subject to the condition that the radial flow normal to
the boundary is zero, or equivalently (within the local theory) that the temperature
perturbation there vanishes. The solution leads to a local dispersion relation for the
complex growth rate −iω. The marginal solutions ( Im {ω} = 0) corresponding to the
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lowest critical Rayleigh number were listed in table 1 of Busse (1970), and correspond
to a wavenumber k in the radial direction whose critical value is zero (see § 3.2).

Yano (1992) noted that it was not possible to embed the Roberts–Busse local theory
into a WKBJ solution which decayed exponentially in the radial s-direction on both
sides of the critical cylinder s = sL (see also Kida 1994). This notion builds on the
view expressed by Soward (1977) that small disturbances at values of the Rayleigh
number just above those given by the local theory can grow initially, but cannot
be sustained; the reason may be traced to the non-zero radial frequency gradient
∂ω/∂s, which leads to phase mixing. Essentially, disturbances continually decrease
their radial s-length scale, and the resulting enhanced dissipation ultimately leads
to their decay. Put another way, in Fourier transform space the region occupied by
the initially growing transformed disturbance is advected out of that unstable region
and subsequently decays. This is analogous to the effect of a non-zero group velocity
∂ω/∂k, which also convects growing disturbances out of their unstable regions but
here in real space. Though this latter effect occurs in many stability problems with
spatially varying backgrounds (see e.g. Huerre & Monkewitz 1990), it is not the
prime consideration in our problem because here the local theory gives zero group
velocity.

A similar phase mixing problem occurs for the linear stability of flow in the narrow
gap between two rotating concentric spheres, the spherical Taylor–Couette problem;
Soward & Jones (1983) found the critical Taylor number for the onset of instability,
and again it is an O(1) amount greater than that predicted by local theory. Yano
(1992) applied the Soward & Jones technique to a modified version of the rotating
convection problem. In order to make progress he considered a model with flattened
geometry. At any radial distance s from the rotation axis, the local configuration
closely resembled Busse’s (1970) annulus with cylindrically radial gravity and tilted
boundaries of small inclination. However, by considering radial variations, such as
curvature of the boundaries, Yano was able to capture the essential features of the true
spherical geometry. His analysis involved two parameters, one of which measuring
boundary tilt needed to be small to justify his perturbation method. However, since
the critical cylinder has radius roughly half that of the sphere, the boundaries are
actually inclined at roughly 45◦ to the equatorial plane, which clearly does not define
a small tilt angle.

The key step in Yano’s (1992) implementation of the ideas was to recognize that
to find a solution of WKBJ type, which decays exponentially on both sides of the
critical cylinder, it is necessary to find a double turning point in the complex s-plane.
At this double turning point s = sc both the complex phase mixing and the complex
group velocity vanish. As in the local theory, the vanishing of the group velocity
is a trivial matter, which is met by k = kc = 0. So in the neighbourhood of sc
the associated s-length scale is long. The central issue is to find the double turning
point in the complex s-plane located where phase mixing vanishes. A single turning
point suffers from the undesirable feature of the Stokes phenomenon, namely that
as WKBJ solutions pass from one Stokes domain to another, an unwanted second
solution is picked up, whose magnitude is proportional to the Stokes constant. The
second solution is ‘unwanted’ in the sense that it does not decay and meet the right
boundary conditions. It was shown in Soward & Jones (1983) that the existence of
a double turning point ensures that by fine tuning the appropriate parameters the
Stokes constant can be adjusted to zero, so allowing a uniformly valid WKBJ solution
to exist. The critical Rayleigh number required is therefore that at which the double
turning point comes into existence (see § 3.3).
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The advantage gained from Yano’s (1992) small-tilt expansion is that the dispersion
relation ω = ω(s, k) is simply an algebraic expression, just as it is for the Busse annulus
(Busse 1986). In contrast, in our approach to the full spherical problem we must first
solve the second-order ordinary differential equation, mentioned above, governing the
z-structure. This must be done numerically for various complex values of s and k to
extract the required details of the dispersion relation, including the important complex
location of the double turning point. Interestingly, that is not a straightforward task.
So like Yano, we first solve a model problem with two adjustable parameters, but
then vary them until we obtain solutions to the actual spherical problem (see § 3.4).

Surprisingly, despite the limitations of Yano’s (1992) small-tilt approximation, he
obtained critical values Rcrit of the Rayleigh number quite close to those which we
find here (see table 2).

Zhang (1992) performed numerical calculations on the problem of rotating convec-
tion between concentric spherical shells at large but finite Taylor number. Because
the solutions are concentrated on the critical cylinder at large Ta, we would expect
that these solutions can be converted into approximate equivalent solutions of the
full sphere problem. These calculations indicated that the Roberts–Busse local theory
was only approximately correct, with a suggested error of the order of 25% for the
critical Rayleigh number (see tables 1 and 2). For the purpose of comparing further
our asymptotic results with numerical computations at large but finite Ta, we have
repeated these calculations, and extended them to the case of whole sphere convection
(see § 5). Our computational results confirm Zhang’s numerical values (see table 4).
A most encouraging finding is that the numerical results are in excellent agreement
with our asymptotic theory, and clearly show that the local theory results do not
give the correct values of the Rayleigh number, azimuthal wavenumber or frequency
at onset (see also tables 5 and 6). Significantly, our asymptotic theory predicts that
the critical cylinder s = sM , upon which the convection amplitude is maximized, is
significantly further from the axis than the local theory value s = sL (see § 4 and
tables 1 and 3). On the critical cylinder, the convection rolls are tilted, a feature
that has led to the term columnar-spiralling modes being used to describe them. Our
asymptotic determination of the critical cylinder location and roll tilt angle is again
both in agreement with the results of Zhang (1992) and our new numerical results.

The critical Taylor numbers predicted by Soward & Jones (1983) for the spherical
Taylor–Couette problem turned out to be only a few percent larger than those
predicted by the local theory, so that direct numerical methods would find it very
difficult to discriminate between the two theories. In the current convection problem,
the difference between the two theories is much larger, and the direct numerical
calculations come down decisively in favour of the Soward & Jones (1983) theory.
Interestingly the disparity between local and global theory was noted in a different
context by Killworth (1980), whose analysis also relied on the isolation of a double
turning point in the complex plane.

Before continuing, we emphasize that our paper does not address the issue of wall-
attached modes (Zhang & Busse 1987), which are relatively high-frequency inertial
waves attached to the equatorial region of the outer boundary (Zhang 1993). This
raises issues beyond the scope of the present analysis. At fixed large Taylor number,
the wall-attached mode may be preferred at sufficiently small Prandtl number. This
feature is consistent with our numerical results, which show the increasing importance
of the outer boundary condition as the Prandtl number is decreased. The competition
between the wall-attached modes and the internal columnar-spiralling modes has
been addressed by Hirsching & Yano (1994).
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2. The governing equations
We consider a sphere of radius r0 rotating about an axis with angular velocity Ω.

Coordinates are chosen so that the axis of rotation is the z-axis. For the asymptotic
theory cylindrical polar coordinates (s, φ, z) are used, while for direct numerical
calculations spherical polar coordinates (r, ϑ, φ) are more convenient. The sphere
is filled with Boussinesq fluid with coefficient of thermal expansion α, kinematic
diffusivity ν and thermal diffusivity κ. Since the fluid contains a homogeneous heat
source, the static temperature gradient in the absence of convection is −βr. The
gravity field is assumed to be −gr. The linearized equation of motion is then

E
∂u

∂t
+ ẑ × u = −∇p+ ERθr + E∇2u, (2.1)

where the unit of time is r2
0/ν, the viscous time, the unit of length is the sphere radius

r0 and the unit of temperature is βνr2
0/κ. The linearized temperature equation is

P
∂θ

∂t
= u · r + ∇2θ, (2.2)

and the equation of continuity is

∇ · u = 0. (2.3)

The dimensionless parameters are the Ekman number E, the Rayleigh number R and
the Prandtl number P defined by

E =
ν

2Ωr2
0

, R =
gαβr6

0

κν
, P =

ν

κ
.

Note that this definition of R corresponds to that used by Chandrasekhar (1961). The
other commonly employed parameter, the Taylor number Ta = 4Ω2r4

0/ν
2, is related

to the Ekman number by Ta = E−2.
If we set

u = ∇×Ψ ẑ + ∇× ∇× ξẑ = uH +W ẑ,

the z-component of the curl of the momentum equation becomes

E

(
∂

∂t
− ∇2

)
∇2
HΨ +

∂W

∂z
= ER

∂θ

∂φ
(2.4)

and the z-component of the double curl of the momentum equation is

E

(
∂

∂t
− ∇2

)
∇2W − ∂

∂z
(∇2
HΨ ) = ER

[
z∇2

Hθ − 1

s

∂

∂s

(
s2
∂θ

∂z

)]
, (2.5)

where

∇2
H ≡ 1

s

∂

∂s

(
s
∂

∂s

)
+

1

s2
∂2

∂φ2
.

The temperature equation (2.2) becomes(
P
∂

∂t
− ∇2

)
θ =

∂Ψ

∂φ
+ zW + s

∂2ξ

∂s∂z
, ∇2

Hξ = −W. (2.6)

While the form (2.4)–(2.6) of the equations is useful for the asymptotic analysis, for
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direct numerical simulation at finite E, a decomposition based on spherical, rather
than cylindrical, polar coordinates is required. Accordingly, following Roberts (1968),
we employ the toroidal–poloidal representation

u = ∇×Tr + ∇× ∇×Sr. (2.7)

We insert this expansion into the radial components of the curl and double curl of
(2.1) to obtain

E

(
∂

∂t
− ∇2

)
 L2T− ∂T

∂φ
+ QS = 0, (2.8)

E

(
∂

∂t
− ∇2

)
 L2∇2S− ∂

∂φ
∇2S− QT+ ER  L2θ = 0, (2.9)

where

 L2 = − 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
− 1

sin2ϑ

∂2

∂φ2
and Q = ẑ · ∇− 1

2
( L2ẑ · ∇+ ẑ · ∇ L2).

The temperature equation becomes

P
∂θ

∂t
=  L2S+ ∇2θ. (2.10)

We use stress-free boundary conditions, as at finite E we expect these to reach
the asymptotic limit more rapidly than in the rigid boundary case. The boundary
conditions are then

S = θ =
∂2S
∂r2

=
∂

∂r

(T
r

)
= 0, (2.11)

all applied at r = r0. At r = 0, regularity conditions apply, so that only solutions
finite as r → 0 are admitted. In practice, these conditions are enforced by the choice
of expansion functions.

The system (2.8)–(2.11) formulated by Roberts (1968) is solved numerically in § 5
below.

3. The asymptotic analysis
3.1. The Roberts–Busse formulation

Starting with the equations in the form (2.4)–(2.6), we are guided by Roberts (1968)
and Busse’s (1970) results concerning the appropriate scaling and so make the
ansatz

1

s

∂

∂φ
∼ ∂

∂s
∼ O(E−1/3

)
,

∂

∂z
∼ O(1) as E ↓ 0,

which is appropriate to the mainstream exterior to any boundary layers. To obtain
the dispersion relation, we assume that disturbances are of the form

exp [i(Ks+Mφ− Ωt)] ,
where Ω is in general complex. At leading order, this implies that both

∇2, ∇2
H → −K2 − M2

s2
= −A2
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so that using (2.4)–(2.5) the z-dependence of the amplitudes is governed by

E(A2 − iΩ)(A2Ψ )− dW

dz
= −iMERθ, (3.1)

E(A2 − iΩ)W − dΨ

dz
= zERθ (3.2)

and (2.6) becomes

(A2 − iPΩ)θ = iMΨ + zW . (3.3)

From (3.3) we can deduce that the boundary conditions u · r = 0 and θ = 0 on the
surface of the sphere are equivalent. This is remarkably fortuitous, because it means
that the thermal boundary layer is only triggered by the small z-derivatives of the
mainstream solution that we construct. It is consequently very weak and does not
even influence the O(E1/3) correction terms (3.16b) which we consider later. Equations
(3.1)–(3.3), together with this boundary condition define the dispersion relation giving
Ω as a function of all the parameters in the problem. We can now scale E out of the
dispersion relation, as expected for our E ↓ 0 limit. The scalings are

R = E−4/3R, Ω = E−2/3ω, M = E−1/3m, K = E−1/3k,

A = E−1/3a, θ = θ, Ψ = E−1/3ψ, W = E−2/3w.

}
(3.4)

The system (3.1)–(3.3) can now be written as a single second-order ordinary differ-
ential equation in z:

d2w

dz2
+

[R(a2 − iω)(m2 + a2z2)

a2 − iPω
− iRm
a2 − iPω

− (a2 − iω)2a2

]
w = 0, (3.5)

where a2 = k2 + m2/s2 (Roberts 1968, equations (7.10)–(7.12); Busse 1970, equation
(5.2)) with boundary conditions

im
dw

dz
+ (a2 − iω)a2zw = 0 at z = ±(1− s2)1/2 = ±h(s) (3.6)

(Roberts 1968, (7.13); Busse 1970, (5.3)). Busse noted that the relevant solutions are
antisymmetric about the equator z = 0, so we can replace the boundary conditions
(3.6) by

im
dw

dz
+ (a2 − iω)a2zw = 0 at z = h(s), w = 0 at z = 0. (3.7)

Note that w = w(s, z) remains a function of both s and z through the s-dependence of
a and through the boundary conditions. Nevertheless, neither the equation (3.5) nor
the boundary conditions (3.6) contain s-derivatives at leading order; in consequence,
the asymptotic theory requires only ordinary differential equations in z to be solved
at each value of s.

3.2. Local stability criteria

To construct the dispersion relation for our problem, we solve the two-point boundary
value problem (3.5)–(3.7) for the complex eigenvalue ω. This then defines ω as a
function of

ω = ω(s, k, m,R) (3.8)

(following the scaling, m is no longer restricted to being an integer) and it is straightfor-
ward to find ω for any value of the parameters using standard numerical techniques.
The objective of the local theory employed by Roberts and Busse is to maximize the
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P 0.01 0.1 1 10 100

RL 0.01566 0.3130 (0.3151) 3.3814 (3.382) 6.2639 (6.265) 6.5674
mL 0.08511 0.1762 (0.176) 0.3004 (0.3003) 0.4329 (0.432) 0.4660
sL 0.5174 0.5135 (0.513) 0.5004 (0.5004) 0.5508 (0.550) 0.5664
ωL 3.8257 1.6595 (1.65) 0.4362 (0.4362) 0.04237 (0.0423) 0.003975

Table 1. Local theory results; values in brackets are taken from Busse (1970)

growth rate Im {ω} over all admissible real s and real k. The marginal modes are then
identified by the minimum value of the Rayleigh number R which gives steady-state
solutions. Evidently this local disturbance is neutral neither growing nor decaying in
space, Im {k} = 0, or time. Thus the latter condition

Im {ω} = 0 (3.9)

can be thought of as the equation determining the Rayleigh number R and frequency
Re {ω} in terms of s, k and m. Let us first minimize R over m at fixed s and k. Then
for an increment dm we have

Im {dω} = Im

{
∂ω

∂m

}
dm+ Im

{
∂ω

∂R
}

dR. (3.10)

Since the minimum is characterized by dR = 0 subject to the constraint (3.9),
Im {dω} = 0, (3.10) implies that

Im

{
∂ω

∂m

}
= 0. (3.11)

We stress that up to this point in the argument the local theory and the global theory,
which we discuss below, are in total agreement.

Consider now minimization over k and s. By arguments similar to those used for
(3.10) but involving increments dk and ds instead, we obtain the conditions

Im

{(
∂ω

∂k

)
L

}
= 0 and Im

{(
∂ω

∂s

)
L

}
= 0, (3.12a,b)

which complete the determination of the minimum RL of R over all real values of
m, k and s. The solution of the system of equations (3.9) and (3.11)–(3.12) provides
the local stability criteria, values for which are identified by the subscript L. It is
important to note that, because the eigenvalue problem (3.5), (3.7) depends on k only
through k2, so does the eigenvalue ω itself. Accordingly, (3.12a) is met trivially by
kL = 0, as does the group velocity in the global case (see (3.22) below).

The four equations just mentioned were used by Roberts and Busse to determine
the four real unknowns, RL, mL, kL, and sL. To solve these four nonlinear equations
numerically, an eigenvalue solver is used as the inner loop of an iterative nonlinear
equation solver. We used the routine C05NBF of the Numerical Algorithm Group
(NAG) library. The partial derivatives in equations (3.11)–(3.12) were evaluated using
centred finite differences. In the course of the iterative solution of the four nonlinear
equations, the second-order eigenvalue problem for ω must be solved many times,
but this causes no difficulty to modern computers. Our results, at various values of
the Prandtl number, can be found in table 1; they are very close to those found by
Busse (1970).
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3.3. Global stability criteria

It is important to appreciate that the theory outlined above is strictly local both in
space and time. From the initial value point of view, the description is valid for a
limited period of time but does not necessarily determine the long time evolution of
small disturbances (Soward 1977). Linked is the fact that, with the time dependence
separated out, the local spatial structure cannot necessarily be extended throughout
the spatial domain and still meet the boundary conditions (Yano 1992). Since similar
local theories have been proposed for other problems (see e.g. the historical survey
section of Soward & Jones 1982), it is important to understand that the local (in
space) theory does not necessarily provide an approximation to the complete (global)
eigenvalue problem. In fact for our convection problem, the local results do not
even provide approximations of the true global solution in the limit E ↓ 0; the local
and global results differ by an O(1) amount, as explained by Soward (1977) and
Yano (1992). This means that previous local solutions do not provide approximate
eigensolutions of the problem they purport to solve. In view of the previous literature,
we summarize very briefly the reason why the local theory is inadequate, and what
needs to be done to find the correct value of R for global instability. For more details
the reader is referred to Soward & Jones (1982), Huerre & Monkewitz (1990), Soward
(1992) and Yano (1992).

Our primary objective is to construct a valid WKBJ solution of (2.4)–(2.6), which
satisfies all appropriate boundary conditions, in the form

E2/3W ∼ w(s, z) exp

[
i

E1/3

(∫
k(s)ds+ mφ− ωt

E1/3

)]
, (3.13)

where guided by the results of § 3.1 above it is anticipated that w and k both vary on
the O(1) length scale of the sphere. In addition, for given m, R and ω the function
k = k(s) is determined by the dispersion relation (3.8), while the function w(s, z)
is uniquely defined by the corresponding solution of (3.5), (3.7) up to an arbitrary
multiplicative function of s, which like w is assumed to vary on an O(1) length scale.
Since k only appears in the dispersion relation for ω in the combination k2, the local
condition (3.12a) is satisfied simply when k = 0 and then both the real and imaginary
parts of ∂ω/∂k vanish. The point sL at which ∂ω/∂k = 0 corresponds to a double
root of the the dispersion relation, where two distinct WKBJ solutions (here k(s) and
−k(s)) have coalesced. The central issue of the eigenvalue problem is to connect those
WKBJ modes which decay exponentially to zero on both sides of s = sL.

The connection problem outlined above is resolved locally in the neighbourhood of
sL by considering the amplitude equation given by Yano (1992), equation (5.3), which
is similar to (3.16a) below. The only significant difference is that the term proportional
to (s − sL)2 in (3.16a) is neglected in comparison with a larger term proportional to
s − sL. Yano’s term linear in s − sL in his (5.3) is present because there is non-zero
phase mixing:

Re

{(
∂ω

∂s

)
L

}
6= 0

(see (3.12b)). As Yano points out, the resulting Airy equation has no solutions that
decay to zero on both sides of sL. By implication it is impossible to connect the two
appropriate WKBJ solutions across s = sL. Indeed, there is no value of the Prandtl
number at which Re {(∂ω/∂s)L} = 0. The point is simply that with R slightly above
RL, phase mixing shortens the radial length of any initial disturbance causing it to
ultimately decay.
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To find a satisfactory solution, we must follow Soward & Jones (1983) and consider
the analytic extension of the exact solution separable in φ and t

W (s, z) exp [i(Mφ− Ωt)]
of the entire convection problem into the complex s-plane. For real s, that solution has
the asymptotic WKBJ representation (3.13). Clearly, it also provides the asymptotic
WKBJ representation of the analytic extension provided that w solves (3.5), (3.7) albeit
for now complex s. Tackling partial differential equations with two essential variables,
here s and z, by techniques whose origin lies with one-dimensional problems was
the main thrust of the Soward & Jones development. Once this point is appreciated,
the key step is to determine the corresponding analytic extension of the dispersion
relation (3.8) by the recipe described. Except for this added complication (ω is the
eigenvalue of an ODE rather than the solution of algebraic equations), our analysis
parallels Yano’s development.

To begin we locate a point s = sc and wavenumber k = kc, at which both the
complex group velocity and complex phase mixing vanish:(

∂ω

∂k

)
c

= 0 and

(
∂ω

∂s

)
c

= 0 (3.14a,b)

(see Huerre & Monkewitz 1990). In general, this means that both sc and kc are complex.
For our problem, however, though the location sc is complex, the wavenumber is real
and simply vanishes, kc = 0, just as it does in the case of the local analysis. Our extra
requirement that the phase mixing vanishes enables the connection problem, which
occurs when the wavenumber has a repeated root, to be resolved. It is accomplished
by considering the local modulated representation

E2/3W ∼W(x)w(s, z) exp

[
i

E1/3

(
mcφ− ωct

E1/3

)]
with x = (s− sc)/E1/6, (3.15a)

which is valid in the neighbourhood of sc. A match is obtained with the WKBJ
solution (3.13) provided that

W∼ exp

[
i

2
k′cx

2

]
in which k′c = lim

s→sc
dk

ds
. (3.15b)

Since kc = 0 is a repeated root of the dispersion relation (3.8), there is a second
neighbouring root k1(s) = −k(s) in the vicinity of s = sc for which

lim
s→sc

dk1

ds
= − k′c (k1(sc) = kc = 0) .

Our limiting process points to the fact that dk/ds is not uniquely defined at s = sc
and highlights the importance of the matching condition (3.15b).

Notice that the radial length in the vicinity of s = sc is relatively long, of O(E1/6). The
systematic expansion of the governing equations (2.8)–(2.10) is particularly sensitive
to the relative sizes of the partial derivatives in the ∇2 operator: ∂2/∂φ2 = O(E−2/3),
∂2/∂s2 = O(E−1/3) and ∂2/∂z2 = O(1). Since kc = 0, only the φ-derivatives influence
the lowest-order result ωc = ω(sc, 0, mc,Rc) at say O(1). At O(E1/3), we begin to
capture the influence of the the radial s-derivatives but the z-derivatives remain small
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and it is at this level we obtain the amplitude equation

−1

2

(
∂2ω

∂k2

)
c

d2W
dx2

+

{
1

2

(
∂2ω

∂s2

)
c

x2 +

(
∂ω

∂R
)
c

R1 −
[
ω1 −

(
∂ω

∂m

)
c

m1

]}
W = 0,

(3.16a)
with

W→ 0 as x→ ±∞
(more precisely, W → 0 in the appropriate sector of the complex plane, see below
(3.17c)), where

R = Rc + E1/3R1, m = mc + E1/3m1, ω = ωc + E1/3ω1. (3.16b)

A similar equation, but for the case of a real double turning point, was derived by
Connor, Hastie & Taylor (1979), their equation (36).

The simple representation (3.16a) stems directly from the small-k expansion of the
dispersion relation (3.8) using the asymptotic result

E1/3

W
d2W
dx2

∼ − k2

which follows from the functional dependence of w(s, z) in (3.15a) on k(s) and the
consistency of the two representations (3.13) and (3.15a). By this device (3.16a)
captures all the appropriate terms at O(E1/3). Interestingly at the higher O(E1/6)
level, we might have expected large terms of the form dW/dx and xW to appear in
(3.16a) but these terms (linear in k and x) are absent because of our ansatz (3.14).
In their absence the structure of the amplitude equation is controlled by the second
partial derivatives of ω with respect to both k and s, which are the coefficients of the
quadratic terms in the dispersion relation expansion. Significantly, in addition to the
∇2 scalings already mentioned, ∂/∂s and s commute to the level of approximation
taken and this leads to the absence of a term xdW/dx, which is linked to the result
(∂2ω/∂k ∂s)c = 0, a consequence of ω being a function of k2 and kc = 0. Finally,
we emphasize that the only way z-derivatives influence the problem is through their
connection with the Coriolis acceleration and the process is encapsulated by the
equation (3.5) for w(s, z).

The locations at which the coefficient of W in (3.16a) vanishes are called turning
points; being quadratic in x, there are in general two. Loosely speaking, when a
WKBJ solution arrives in the vicinity of a turning point a second WKBJ solution
is triggered, as in the case of Airy’s equation. Essentially our global stability criteria
(3.14) isolate, correct to lowest order, a double turning point sc. The required small
separation, O(E1/6), is only apparent in the higher-order theory (3.16). Thus by fine
tuning the values of R1 and ω1, the locations of the turning points can be adjusted
so as to eliminate the unwanted second WKBJ solution, which we identified by a
second wavenumber k1(s) = −k(s) above. By this device, we obtain the desired WKBJ
solution tending to zero both as x → −∞ and x → +∞. This procedure identifies a
sequence of eigenfunctions, the first one of which is

W =W0 exp

[
−1

2

(
∂2ω/∂s2

∂2ω/∂k2

)1/2

c

x2

]
(3.17a)
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provided that (
∂ω

∂R
)
c

R1 −
[
ω1 −

(
∂ω

∂m

)
c

m1

]
= −1

2

(
∂2ω

∂k2

∂2ω

∂s2

)1/2

c

. (3.17b)

Clearly the eigenfunction (3.17a) coincides with the asymptotic representation (3.15b)
and so fixes the sign to be taken by the square roots; the opposite and inappropriate
signs are linked to the second unwanted WKBJ solution identified by the second wave
number k1. Since (∂ω/∂m)c is real (see (3.11)), (3.17b) is an equation that fixes the real
values of R1 and ω1 − (∂ω/∂m)cm1. In view of the fact that m1 determines an O(1)
correction to the wavenumber M, it is reasonable for the purposes of comparison
with the numerics to define

m1 = MN − E−1/3mc, (3.17c)

where MN is the value of M predicted by the numerical solution. It should be
emphasized that though this choice influences the realized frequency correction ω1

the realized value of R1 remains uniquely defined by the imaginary part of formula
(3.17b).

Of course, the double turning point analysis is natural when sc is real. Nevertheless,
it is equally applicable when sc is complex; but then to complete the specification we
need to ensure that (3.17a) merges with the correct WKBJ solution in the appropriate
Stokes sectors in the complex s-plane (see § 4 below). When this is accomplished
the WKBJ solution (3.13) gives a uniformly valid approximation of the solution
for real s. Though the procedure outlined is well known within the framework of
ordinary differential equations (see, for example, Wasow 1985), the notion of analytic
continuation of solutions of partial differential equations, as required here, is less
intuitive and the interesting aspect of Soward & Jones’ (1983) earlier study.

3.4. Numerical implementation of the global criteria

Since we need to extend our problem onto the complex s-plane to find the double
turning point, it is more convenient to formulate (3.5) and (3.7) as an ODE on the
fixed interval [0,1], rather than allowing the boundary points to be possibly complex.
We extend the definition of

h(s) = (1− s2)1/2 (3.18)

into the complex plane, keeping to the branch corresponding to the positive square
root. We can then rescale the equation and boundary condition using

R → h−10/3R̂, ω → h−2/3ω̂, m→ h2/3m̂, k → h−1/3k̂,

a→ h−1/3â, w → w, s→ ĥs, z → hẑ.

}
(3.19)

Note that this implies â2 = k̂2 + m̂2/̂s2. The form of the system (3.5) and (3.7) is left
invariant by this transformation and so

d2w

dẑ 2
+

[
R̂(â2 − iω̂)(m̂2 + â2ẑ2)

â2 − iPω̂
− iR̂m̂

â2 − iPω̂
− (â2 − iω̂)2â2

]
w = 0, (3.20)

im̂
dw

dẑ
+ (â2 − iω̂)â2ẑw = 0 at ẑ = 1, w = 0 at ẑ = 0. (3.21)

Note that if s becomes complex, h becomes complex, so it follows that in system

(3.20)–(3.21) R̂, â and m̂ are now complex, as well as ω̂.
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We now derive the conditions for the existence of a double turning point in these
new variables. The condition (∂ω/∂k)c = 0 leads to(

k̂
∂ω̂

∂â

)
c

= 0. (3.22)

As indicated by Yano (1992), the desired solution of this is k̂c = 0; so âc = m̂c/ ŝc.
Note that although this implies kc = 0 at the complex turning point, when the solution

is continued down to the real axis, k is O(1). With k̂ now eliminated, ω̂ can be viewed

as a function of â, R̂, and m̂. The condition (∂ω/∂s)c = 0 then leads to(
1

3
+
â2

m̂2

)
c

(
â
∂ω̂

∂â

)
c

+
10

3

(
R̂
∂ω̂

∂R̂

)
c

− 2

3

(
m̂
∂ω̂

∂m̂

)
c

− 2ω̂c

3
= 0, (3.23)

the real and imaginary parts of which provide two equations, while (3.9) and (3.11)
give another two equations,

Im
{

(1 + ŝ2c)
1/3ω̂c

}
= 0, Im

{
(1 + ŝ2c)

2/3

(
∂ω̂

∂m̂
+

â

m̂

∂ω̂

∂â

)
c

}
= 0, (3.24a, b)

and Im {Rc} = 0 and Im {mc} = 0 give the last two equations

Im {(1 + ŝ2c)
5/3R̂c} = 0, Im

{
(1 + ŝ2c)

−1/3m̂c
}

= 0. (3.25a, b)

Equations (3.23)–(3.25) comprise six (real) equations for three complex unknowns, âc,

R̂c and m̂c. This defines the numerical problem we have to solve.

The procedure adopted was similar to that used to find the local dispersion
relation. A two-point boundary value solver was used to find the eigenvalue ω̂ for

any given complex â, R̂ and m̂. This was achieved using a finite difference scheme;
the truncation error was monitored by doubling the number of points used until
satisfactory convergence was obtained. This eigenvalue solver then forms the inner
loop of an iteration procedure to solve the six nonlinear equations (3.23)–(3.25) for

the six unknowns, the real and imaginary parts of âc, R̂c and m̂c. The Numerical
Algorithm Group (NAG) routine C05NBF was used to perform this outer loop
iteration.

However, solving nonlinear equations of this type, when the system contains as
many as six unknowns, requires some care with the initial estimate used. Random
initial estimates did not lead to satisfactory convergence. The procedure adopted was
to use a comparison problem, defined by

d2w

dẑ
+

[
R̂(â2 − iω̂)(m̂2 + η2â

2ẑ2)

â2 − iPω̂
− iη1R̂m̂

â2 − iPω̂
− (â2 − iω̂)2â2

]
w = 0, (3.26)

im̂
dw

dẑ
+ η2(â

2 − iω̂)â2ẑw = 0 at ẑ = 1, w = 0 at ẑ = 0, (3.27)

which differs from (3.20)–(3.21) only by the additional factors of η1 and η2. When
η1 = η2 = 1 we recover the desired problem, but when η1 = η2 = 0 we have a much
simpler problem which can be solved by elementary methods. For η1 = η2 = 0 the

eigenfunction w = sin(πẑ/2), and for P = 1 the solution to (3.23)–(3.25) is R̂ = π4/3/2,
m̂ = π1/331/2/2 and â = π1/3/21/2 with ω̂ = 0.
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P 0.01 0.1 1 10 100

Absolute instability results

Rc 0.4762 1.1295 4.1173 8.0470 8.5954
mc 0.08536 0.1770 0.3029 0.4848 0.5363
sr 0.4928 0.4895 0.5342 0.6805 0.7114
si −0.1647 −0.1479 −0.09667 −0.08546 −0.08782
ωc 2.6668 1.2386 0.4715 0.06638 0.006433
Rc/RL 30.406 3.608 1.218 1.285 1.372

Yano’s (1992) results

Rc/RL 3.58 1.24 1.29
mc 0.169 0.297 0.498
ωc 1.261 0.475 0.0763

First-order correction coefficients

P 0.1 1 10

(∂ω/∂R)c 0.05756 + 0.5453 i 0.03658 + 0.1062 i 0.006633 + 0.006709 i
(∂2ω/∂k2)c −3.3041− 3.7099 i −0.9652− 0.9895 i −0.2028− 0.08236 i
(∂2ω/∂s2)c −1.4271− 27.6405 i −5.8492− 13.7241 i −2.0611− 0.6950 i
(∂ω/∂m)c 3.1556 0.5186 −0.04156
R1 9.9468 17.7815 17.8976
ω1-(∂ω/∂m)cm1 −1.6543 −0.6089 −0.2047

Table 2. Absolute instability results, with sc = sr + isi. Rc/RL is ratio of critical Rayleigh number
of absolute instability to critical Rayleigh number for local instability. Also given are Yano’s (1992)
small inclination results and the first order correction coefficients.

The simplest procedure would be to increase η1 and η2 together until they reached
unity, following the nonlinear solution. In practice, this was not successful, as the
solution is lost at η1 = η2 ∼ 0.25. The successful technique was to first increase η1

from zero to unity in steps of 0.1, keeping η2 = 0, and then to increase η2 from
zero to unity in steps of 0.1, keeping η1 = 1. The first part of this operation, with
η2 = 0, is simplified by the fact that the eigenfunction remains at w = sin(πẑ/2), so
the dispersion relation can be written down explicitly, which makes it possible to find
the conditions (3.23)–(3.25) as explicit formulae. These nonlinear equations can then
be solved without the need to use a boundary value solver for the eigenvalue ω, but
they still have to be solved numerically. The second part of the operation, increasing
η2 from zero to unity at η1 = 1 requires a routine evaluating ω as a function of the
parameters, which is then used to evaluate the derivatives needed to solve (3.22)–(3.25)
numerically.

Once the solution at P = 1 is obtained by this procedure, the solution was
continued by increasing or decreasing P gradually. In this way, the conditions for
absolute instability can be calculated. Once the ‘hat’ quantities are found, they can be
converted back using (3.19) to give the real values of Rc, mc, ωc; sc is still complex.
The values found, together with the small-inclination approximation results of Yano
(1992), are given in table 2. Also given in table 2 are the coefficients(

∂ω

∂R
)
c

=
1

(1 + ŝ2c)
4/3

(
∂ω̂

∂R̂

)
c

,

(
∂2ω

∂k2

)
c

=

(
1

â

∂ω̂

∂â

)
c

, (3.28a)
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∂ω

∂m

)
c

= (1 + ŝ2c)
2/3

(
∂ω̂

∂m̂
+

â

m̂

∂ω̂

∂â

)
c

, (3.28b)(
∂2ω

∂s2

)
c

= ŝ2c(1 + ŝ2c)
4/3

[
−4

9
ω̂c + 2

1 + ŝ2c
ŝ4c

(
â
∂ω̂

∂â

)
c

+
(D2ω̂

)
c

]
, (3.28c)

where the differential operator D is

D =

(
1

3
+

1

ŝ
2
c

)
â
∂

∂â
+

10

3
R̂
∂

∂R̂
− 2

3
m̂
∂

∂m̂
. (3.28d)

In evaluating these quantities, we recall from (3.23) and (3.24) that

âc =
m̂c

ŝc
, (Dω̂)c = 2

3
ω̂c. (3.29)

The first-order corrections R1 and ω1 − (∂ω/∂m)cm1 are determined from (3.17b)
using the formula (3.28) and are also listed in table 2.

The local instability results are seen to be significantly different from the absolute
instability results, particularly at lower Prandtl numbers. Also of note is how well
Yano’s (1992) results compare with the present results, despite the small-inclination
approximation being used. This provides further evidence of how effective the annulus
model is in describing the essential effects of the geometry of spherical convection.

4. Extending the solution to the real axis
Once the critical values of R = Rc, m = mc and ω = ωc are determined by finding

the double turning point in the complex plane, the corresponding solution on the real
axis can be constructed, recalling from (3.13) that the s, z-dependence has the form

∼ w(s, z) exp

[
i

E1/3

∫
k(s) ds

]
.

Here the z-dependence of the eigenfunction w(s, z) and the complex eigenvalue k(s)
at given s are determined by the solution of the eigenvalue problem (3.5)–(3.6), while
the amplitude of that solution as function of s is determined by higher-order theory.
In other words, the leading-order behaviour, even possibly at complex s, is controlled
by the value of the complex wavenumber k(s), which solves the dispersion relation
(3.8) in the form

ω(s, k, mc,Rc) = ωc (4.1)

with the parameters m and R fixed at their critical values. By construction, at the
double turning point s = sc, the wavenumber has the double zero root k = 0. As we
move away from this point in the complex plane, it splits into two non-zero values
±k. So upon reaching the real s-axis, we must isolate which of the two gives the
physically acceptable solution. To this end, we seek the point M, at s = sM , on the
real axis where Im {k} = 0, and choose the k-root which has Im {dk/ds} > 0. There
the solution takes its maximum value, being approximated locally by

∼ w(s, z) exp

[
ikM

s− sM
E1/3

+
ik′M
2

(s− sM)2

E1/3

]
with k′M =

(
dk

ds

)
M

. (4.2)

Since kM and Im {k′M} are both O(1) at the point M, it follows that the radial
wavenumber is O(E1/3), the same as the azimuthal wavenumber, while the extent of
the radial modulation of the disturbance is O(E1/6). The location sM , and the corre-
sponding values of kM and k′M , are given in table 3 as a function of Prandtl number.
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P 0.01 0.1 1 10 100

sM 0.8692 0.7131 0.5915 0.6922 0.7195
kM −0.3325 −0.4243 −0.3486 −0.3007 −0.3154
Re {(∂k/∂s)M} −1.336 −1.012 −1.595 −1.166 −1.046
Im {(∂k/∂s)M} 0.186 0.516 1.710 3.331 3.529
s− 0.4042 0.3874 0.4634 0.6025 0.6286
s+ 1.0000 0.9926 0.7563 0.7772 0.8029

Table 3. Solution characteristics on the real axis.

Another question of interest is where the anti-Stokes lines emanating from the
double turning point cut the real axis, say at the points A− and A+, with s-coordinates
s− and s+ respectively. Since the two solutions for k are of the form ±k, the anti-Stokes
lines are defined by the path

Im

{∫ s

sc

k(s) ds

}
= 0, (4.3)

where as usual sc is the double turning point. The significance of the anti-Stokes lines
is that in the interval (s−, s+) the WKBJ solution based on the k with Im {k′M} > 0
is valid. Outside this interval, this is no longer the case. In consequence, our solu-
tion is only valid provided the interval (s−, s+) lies entirely in physical space, which
for the whole sphere problem is (0, 1). Fortunately, as we see from table 3, where s−
and s+ are tabulated, this validity condition holds for all Prandtl numbers. It should
be noted that at small P , s+ becomes very close to unity. Indeed, it is only less than
unity by a small amount at P = 0.1, and at P = 0.01 s+ lies so close to unity that
great accuracy is needed to resolve the difference. Although in theory the asymptotic
solution is valid in the limit of small E at any fixed P , in practice extremely
small values of E will be needed to get the behaviour near s = 1 correct when
P < 0.1.

In the case of a spherical shell of finite gap, it is not necessarily the case that
the interval (s−, s+) lies entirely within the fluid. It may happen that s− is less than
the s-value of the inner-sphere. In that case, the inner-sphere boundary condition at
si (< s−) must be taken into account, and the critical Rayleigh number will be altered
by an O(1) amount. In some sense, this is rather remarkable, because the solution
at the point A− is exponentially small, so one might not think that setting it to
zero could make much difference. Nevertheless, this näıve view is incorrect because,
even though the WKBJ mode (k) is exponentially small, it cannot alone meet the
homogeneous boundary condition on the inner sphere; the second WKBJ mode (−k)
is subdominant and so cannot be invoked to resolve the difficulty. Evidently a new
solution method is required when (s−, s+) does not lie entirely within the fluid; this
issue will be addressed in a subsequent paper.

Another feature of interest in table 3 is the rather large values of sM compared to
the local theory values sL given in table 1. Apart from P close to unity, it is no longer
true that the disturbance is located at s roughly half the radius of the sphere; the
disturbance is located considerably further from the axis. This is perhaps the most
striking difference between the true global instability results and the local theory.

The radial extent of the disturbance is best measured by Im {k′M}, as can be seen
from (4.2); this quantity determines the exponential cut-off. Im {k′M} is much larger
at high Prandtl number than at low Prandtl number, so the disturbance is much more
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confined at high P than at low P . This is related to the fact that the interval (s−, s+) is
much larger at low P . We therefore expect that the ratio of the radial extent of the rolls
to azimuthal wavelength will increase significantly as the Prandtl number is lowered.

In the next section, we compare these expectations with numerical solutions of the
partial differential equations.

5. Numerical solution of the PDEs
To solve the PDE eigenvalue problem at finite E, we use the toroidal–poloidal ex-

pansion (2.7), and spherical polar coordinates, so that the system becomes (2.8)–(2.11).
We use expansion in spherical harmonics, and expansion in Chebyshev polynomials
in the radial direction. Because of the azimuthal and temporal symmetry, the depen-
dence exp i(Mφ−Ωt) can be assumed, but spherical harmonics of different degree are
coupled. Following the work of Busse (1970) we only need to consider the symmetric
modes, so the expansions take the form

S =

Nx+2∑
n=1

L∑
l=0

Snlr
k2T2n−1(r)P

m
2l+m(cos ϑ) exp i(Mφ− Ωt), (5.1)

T =

Nx+1∑
n=1

L∑
l=0

Tnlr
k1T2n−1(r)P

m
2l+m+1(cos ϑ) exp i(Mφ− Ωt), (5.2)

where if m is even k1 = 2 and k2 = 1, if m is odd, k1 = 1 and k2 = 2 (see e.g. Jones,
Longbottom & Hollerbach 1995), bearing in mind the need for the expansions to have
the correct behaviour at the axis. The equations in the radial direction are derived
by collocation at the positive zeros of T2Nx

(r) together with the boundary conditions
(2.11).

Significant simplification occurs because in the equation corresponding to degree
2l+m the interaction between harmonics is restricted to the adjacent modes of degrees
2l +m− 1 and 2l +m+ 1. In consequence the corresponding matrices have a banded
structure, aiding their inversion. An LU decomposition was applied to the banded
matrix, and inverse iteration was used to find the (complex) eigenvalue Ω. Iteration
on the Rayleigh number then reduces the imaginary part of Ω to zero.

The results for P = 10, P = 1 and P = 0.1 are given in tables 4, 5 and 6. The
truncations Nx and L are also listed, together with the (integer) value of M which
gives minimum critical Rayleigh number, along with the corresponding Rayleigh
number and frequency. For comparison, the leading-order asymptotic results at the
given Taylor number (recall Ta = E−2) are listed. Also tabulated are the asymptotic
results for R and Ω including the first-order corrections using equations (3.16b),
(3.17b) and (3.17c), with the numerical results listed in table 2. The value of Ω given
for the first-order correction assumes that the critical value of M is that given by the
numerical results; this is necessary as the asymptotic theory does not restrict M to
integer values.

We note that although there are differences between the numerical results and the
leading-order theory, the percentage difference between the asymptotic and numerical
results steadily decreases as Ta ↑ ∞ as we would hope. Furthermore, when the
first-order corrections are included the agreement is significantly better, particularly
in the cases P = 10 and P = 1. Indeed, the small residuals in these cases are
consistent with the expansions (3.16b) being continued in the natural way to give
second-order corrections O(E2/3). In the case P = 0.1 the agreement is not so good,
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Ta 109 1010 1011 3× 1011 1012

Numerical results

R 8.761× 106 3.945× 107 1.797× 108 3.713× 108 8.240× 108

Ω 61.748 136.49 297.23 430.06 649.58
M 14 21 32 39 47
Nx 24 26 34 36 42
L 16 18 20 22 26

Zhang’s (1992) finite-gap results converted using (5.3)

R 8.6× 106 3.9× 107 1.7× 108 8.0× 108

Ω 62 1.3× 102 3.3× 102 6.2× 102

M 16 21 34 52

Leading-order asymptotic results

R 8.047× 106 3.735× 107 1.734× 108 3.606× 108 8.047× 108

Ω 66.38 143.02 308.12 444.38 663.82
M 15.33 22.50 33.03 39.67 48.48

Asymptotic results including first-order corrections

R 8.613× 106 3.914× 107 1.790× 108 3.704× 108 8.226× 108

Ω 61.66 136.41 297.09 429.91 649.50

Table 4. Numerical and asymptotic solutions for P = 10.

Ta 109 1010 1011 3× 1011 1012

Numerical results

R 4.761× 106 2.105× 107 9.466× 107 1.947× 108 4.302× 108

Ω 4.428× 102 9.849× 102 2.124× 103 3.073× 103 4.638× 103

M 9 14 20 24 30
Nx 24 26 34 36 40
L 16 16 20 22 28

Leading-order asymptotic results

R 4.117× 106 1.911× 107 8.870× 107 1.845× 108 4.117× 108

Ω 4.715× 102 1.0158× 103 2.188× 103 3.156× 103 4.715× 103

M 9.58 14.06 20.64 24.78 30.29

Asymptotic results including first-order corrections

R 4.680× 106 2.089× 107 9.433× 107 1.943× 108 4.295× 108

Ω 4.427× 102 9.861× 102 2.124× 103 3.073× 103 4.639× 103

Table 5. Numerical and asymptotic solutions for P = 1.

and the residuals cannot naturally be explained as being due to higher-order terms.
We conclude that the anti-Stokes line coming so close to the outer boundary in the
case P = 0.1 (see table 3) is affecting the accuracy of the asymptotic expansion at low
Prandtl numbers. Note also that the numerical results cannot be reconciled with the
local theory results, which lead to significantly smaller values of the critical Rayleigh
number.

It is also possible to compare these results with the finite-gap numerical calculations
of Zhang (1992). In that paper, the inner sphere is located at radius η/(1 − η) and
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Ta 109 1010 1011 3× 1011

Numerical results

R 1.293× 106 5.694× 106 2.616× 107 5.389× 107

Ω 9.777× 102 2.556× 103 5.345× 103 8.016× 103

M 4 8 11 14
Nx 26 26 36 40
L 18 20 26 26

Leading-order asymptotic results

R 1.129× 106 5.243× 106 2.433× 107 5.062× 107

Ω 1.239× 103 2.668× 103 5.749× 103 8.291× 103

M 5.60 8.21 12.06 14.48

Asymptotic results including first-order corrections

R 1.444× 106 6.237× 106 2.748× 107 5.607× 107

Ω 1.027× 103 2.560× 103 5.408× 103 8.032× 103

Table 6. Numerical and asymptotic solutions for P = 0.1.

the concentric outer sphere at radius 1/(1− η), so that η is the radius ratio. Zhang’s
numerical results were for η = 0.4. To compare results we use the scalings

Rg = (1− η)10/3R, Mg = (1− η)−2/3M, sg = (1− η)−1s,

Ωg = (1− η)2/3Ω, Kg = (1− η)1/3K, zg = (1− η)−1z,

}
(5.3)

where the quantities with g subscripts refer to the values found in the finite-gap
calculations and the unsubscripted quantities to the whole sphere calculation. We see
that the results of table 4 compare satisfactorily with table 2 of Zhang (1992); we
have converted his results to the full sphere case using (5.3).

In figure 1 we show the eigenfunctions for the radial and azimuthal components
of velocity, us and uφ, on the equatorial plane. Both the φ-dependence and the radial
dependence of these quantities are shown for Prandtl numbers in the range 0.1–10
for Ta = 1011 and Ta = 1012. The φ-dependence in figure 1 is shown for s = sM
as defined in table 3, where the disturbance takes its maximum value according
to asymptotic theory. The φ-value used for the radial dependence curves is one at
which the φ-dependent curves have a maximum; since these φ-dependence curves
are sinusoidal it does not matter which maximum is chosen. We see that in figures
1(a) and 1(b), which are for Prandtl number P = 10, the disturbance is already
localized at Ta = 1011, and becomes more localized at Ta = 1012 in accord with the
asymptotic theory. The excellent agreement between the asymptotic and numerical
results is therefore not unexpected. In the case P = 1, figures 1(c), Ta = 1011 and
1(d), Ta = 1012, the disturbance is somewhat more spread out, but the amplitude
does become very small before it reaches either the centre or the outer boundary,
so again the good agreement between asymptotic theory and numerical results is no
surprise. The case shown in figure 1(e), for P = 0.1, Ta = 1011, is rather different;
the amplitude has not dropped to very small values as s → 1, the outer boundary.
ur = 0 at s = 1 is enforced by the boundary conditions, but uφ is not constrained
to be zero, because the outer boundary is stress-free, and it is in fact significantly
non-zero. In consequence, we are not sufficiently far into the asymptotic regime in
figure 1(e) for the boundary condition W → 0 as x → ∞ in (3.16a) to be a good



176 C. A. Jones, A. M. Soward and A. I. Mussa

(a)
1.0

0.5

0

–0.5

–1.0

0 0.2 0.4 0.6 0.8 1.0

ur
uruφ

uφ

(b)
1.0

0.5

0

–0.5

–1.0
0 0.2 0.4 0.6 0.8 1.0

ur

uruφ

uφ

(c)
1.0

0.5

0

–0.5

–1.0
0 0.2 0.4 0.6 0.8 1.0

urur uφ uφ

Figure 1 (a–c). For caption see facing page.
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Figure 1. The azimuthal dependence and the radial dependence of the velocity components uφ
and ur are shown in the equatorial plane. For the azimuthal plot, the dotted curve gives ur and
the dashed curve uφ. The abscissa is 1/2π times the azimuthal angle φ, and the value of r = sM ,
is taken from table 3. The ordinate is normalized so that the maximum value of ur is unity, the
relative magnitude of uφ then being determined from the numerical calculation. For the radial plot,
both ur and uφ are plotted as labelled solid lines. The abscissa is the r-coordinate, and the value
of φ is chosen to be at a point where the azimuthal plot has a local maximum of ur . The ordinate
scaling is determined by the azimuthal plot normalization. (a) P = 10, Ta = 1011 (azimuthal plot at
r = sM = 0.6922); (b) P = 10, Ta = 1012; (c) P = 1, Ta = 1011 (azimuthal plot at r = sM = 0.5915);
(d) P = 1, Ta = 1012; (e) P = 0.1, Ta = 1011 (azimuthal plot at r = sM = 0.7131).

approximation, which is consistent with the comparatively poor agreement between
asymptotic and numerical results at low P . At larger Ta, the disturbance is likely
to become more localized, and the asymptotic theory to give better results, but
unfortunately it becomes computationally very expensive to obtain numerical results
at very large Ta and small P .

We also note that the location of the disturbance maximum, s = sM , given in table
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3 is in reasonable agreement with the graphs shown in figure 1: in particular, it is
noticeable that the disturbance maximum is nearest the axis at P = 1, becoming
significantly further out from the axis than local theory would indicate both at lower
and higher Prandtl numbers. The location of the critical cylinder as determined in
table 3 is also consistent with Zhang’s (1992) figure 2.

Zhang also found that the rolls tilt at low Prandtl number, i.e. the local wave
vector (KM,M/SM) = (kM, m/sM) normal to the surface of constant phase changes
its direction as P varies. The tilt angle, defined by tan−1(−kMsM/m), varies from
approximately 20◦ at P = 10 to just over 60◦ at P = 0.1, a similar range of variation
to that found by Yano (1992) and Zhang (1992). Note that since kM is negative (see
table 3), the direction of the tilt is in the prograde sense as s increases, as in figure 3
of Zhang (1992).

The weak z-dependence, together with the continuity equation, implies that

us

uφ
∼ λs

λφ
.

As noted above, the ratio kMsM/m decreases as P increases, so the inverse ratio, λs/λφ,
increases with P . We therefore expect us/uφ to increase with P , and this trend can be
seen in figure 1: at P = 10, us (= ur) is larger than uφ, but at P = 0.1 this is reversed,
and uφ is larger than us.

6. Conclusions
The main result is that we have successfully applied the complex double turning

point theory to find the condition for the absolute instability due to convection in a
rapidly rotating sphere for the first time. It is found that the results are significantly
different from the previous local theories. Although it is hard numerically to get into
the asymptotic regime, it is possible to get far enough to show conclusively that the
local theory is inadequate, and that the complex theory gives much better results. The
critical azimuthal wavenumber, the frequency at onset as well as the critical Rayleigh
number are all correctly predicted, as is the location of the critical cylinder on which
the convection first onsets. The other major difficulty of the local theory, its failure
to give the radial structure because it gives the critical radial wavenumber as k → 0
in the limit E ↓ 0, is also resolved. The predicted radial structure from the asymptotic
theory is in accord with that derived from the numerical solutions.

Previous numerical calculations of Zhang (1992) are confirmed, and the small-
inclination theory of Yano (1992) is shown to give a remarkably good approximation.

The location of the anti-Stokes lines for this problem indicates that the asymptotic
theory will not be particularly useful at low Prandtl numbers; however, it is known
that inertial modes (Zhang 1994) rather than Rossby modes are important at very
low Prandtl number. We also note that this work can be extended to cover a
large number of related instability problems in either whole sphere or spherical gap
geometry.
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